Spis treści: Plant Biotechnology: The Genetic Manipulation of Plants


Contents
List of abbreviations, s. xix

1   Plant genomes: the organization and expression of plant genes, s. 1

  • Introduction, s. 1
  • DNA, chromatin, and chromosome structure, s. 1
  • Chromatin, s. 4
  • An introduction to gene structure and gene expression, s. 6
  • Gene structure and expression in a eukaryotic protein-coding gene, s. 6
  • Translation, s. 10
  • Regulation of gene expression, s. 16
  • Chromatin conformation, s. 16
  • Gene transcription, s. 16
  • RNA modification, splicing, turnover, and transport, s. 18Translation, s. 20
  • Post-translational modification, s. 21
  • Localization, s. 21
  • Protein turnover, s. 21
  • Conclusions, s. 22
  • Implications for plant transformation, s. 22
  • Examples of promoter elements used to drive transgene expression, s. 26
  • Protein targeting, s. 26
  • Heterologous promoters, s. 26
  • Genome size and organization, s. 27
  • Arabidopsis and the new technologies, s. 28
  • Genome-sequencing projects—technology, findings, and applications, s. 28
  • Biotechnological implications of the AGI, s. 31
  • Crop plant genome sequencing, s. 31
  • Summary, s. 33
  • Further reading, s. 34

2 Plant tissue culture, s. 37

  • Introduction, s. 37
  • Plant tissue culture, s.37
  • Plasticity and totipotency, s. 37
  • The culture environment, s. 38
  • Plant cell culture media, s. 39
  • Plant growth regulators, s. 41
  • Culture types, s. 44
  • Callus, s. 44
  • Cell-suspension cultures, s. 45
  • Protoplasts, s. 46
  • Root cultures, s. 46
  • Shoottip and meristem culture, s. 46
  • Embryo culture, s. 46
  • Microspore culture, s. 47
  • Plant regeneration, s. 48
  • Somatic embryogenesis, s. 48
  • case study 2.1 Cereal regeneration via somatic embryogenesis from immature or mature embryos 50Organogenesis, s. 51
  • Integration of plant tissue culture into plant transformation protocols, s. 51
  • Summary, s. 52
  • Further reading, s. 53

3 Techniques for plant transformation, s. 54

  • Introduction, s. 54
  • Agrobactem/m-rnediated gene transfer, s. 54
  • The biology of Agrobacterium, s. 54
  • TheTiplasmid, s. 56
  • Ti-plasmid features, s. 56
  • The process of T-DNA transfer and integration, s. 59
  • Step 1. Signal recognition by Agrobacterium, s. 60
  • Step 2. Attachmentto plant cells, s. 60
  • Step 3. Induction of vir genes, s. 60
  • Step 4. T-strand production, s. 60
  • Step 5. Transfer of T-DNA out of the bacterial cell 60 Step 6. Transfer of the T-DNA and Vir proteins into the plant cell and nuclear localization, s. 60
  • Practical applications of Agrooacterium-mediated plant transformation, s. 61
  • case study 3.1 AgroDacten'um-mediated transformation of tobacco, s. 62
  • Transformation, s. 64
  • Direct gene-transfer methods, s. 66
  • Particle bombardment, s. 67
  • case study 3.2 Biolistic transformation of rice, s. 68
  • Polyethylene glycol-mediated transformation, s. 72
  • Electroporation, s. 73
  • Silicon carbide fibres: WHISKERS™, s. 73
  • Summary, s. 74
  • Further reading, s. 74

4 Vectors for plant transformation, s. 77

  • Introduction, s.77
  • Desirable features of any plasmid vector, s. 77
  • Development of plant transformation vectors, s. 79
  • Basic features of vectors for plant transformation, s. 79
  • Promoters and terminators, s. 79
  • Selectable markers, s. 86
  • Reporter genes, s. 87
  • Origins of replication, s. 91
  • Co-integrative and binary vectors, s. 91
  • Familiesof binary vectors, s. 91
  • Optimization, s. 92
  • Arrangement of genes in the vector, s. 95
  • Transgene copy number, s. 98
  • Transgene position, s.98
  • Transgene features, s. 98
  • Clean-gene technology, s. 100
  • Summary, s. 100
  • Further reading, s. 101

5 The genetic manipulation of herbicide tolerance, s. 105

  • Introduction, s. 105
  • The use of herbicides in modern agriculture, s. 106
  • What types of compounds are herbicides?, s. 107
  • Strategies for engineering herbicide tolerance, s. 111
  • case study 5.1 Glyphosate tolerance, s. 111
  • case study 5.2 Phosphinothricin, s. 121
  • Prospects for plant detoxification systems, s. 123
  • Commercialization of herbicide-tolerant plants to date, s. 124
  • case study 5.3 Engineering imidazolinone tolerance by targeted modification of endogenous plant genes, s. 126
  • The environmental impact of herbicide-tolerant crops, s. 127
  • The development of super-weeds, s.129
  • Summary, s. 130
  • Further reading, s. 131

6 The genetic manipulation of pest resistance, s. 133

  • Introduction, s.133
  • The nature and scale of insect pest damage to crops, s. 134
  • GM strategies for insect resistance: the Bacillus thuringiensis approach, s. 134
  • The use of 8. thuringiensis as a biopesticide, s.138Bt-based genetic modification of plants, s. 138
  • case study 6.1 Resistance of Bt maize to the European corn borer and other pests, s. 140
  • The problem of insect resistance to Bt, s. 141
  • The environmental impact of Bt crops, s. 145
  • The Copy Nature strategy, s. 146
  • case study 6.2 Cowpea trypsin inhibitor, s. 149
  • Insect-resistant crops and food safety, s. 153
  • Summary, s. 153
  • Further reading, s. 153

7 Plant disease resistance, s. 156

  • Introduction, s. 156
  • Plant-pathogen interactions, s. 157
  • Prokaryotes, s. 158
  • Fungi and water moulds, s. 158
  • Viruses, s. 160
  • Existing approaches to combating disease, s. 160
  • Natural disease-resistance pathways: overlap between pests and diseases, s. 162
  • Anatomical defences, s. 162
  • Pre-existing protein and chemical protection, s. 162
  • Inducible systems, s. 163
  • Systemic responses, s. 170
  • Biotechnological approaches to disease resistance, s. 172
  • Protection against pathogens, s. 173
  • Antimicrobial proteins, s. 174
  • Transgenic crops for food safety, s. 176
  • Induction of HR and SAR in transgenic plants, s. 177
  • case study 7.1 The BASF potato, s. 178
  • Developments for the future, s. 179
  • Othertransgenic approaches, s. 179
  • Future prospects for breeding, s. 179
  • case study 7.2 Xanthomonas spp, s. 180
  • Summary, s. 181
  • Further reading, s. 182

8 Reducing the effects of viral disease, s. 184

  • Introduction, s. 184
  • Types of plant virus, s. 184
  • RNA viruses, s. 186
  • Entry and replication: points of inhibition, s. 188
  • How has the agricultural community dealt with viruses?, s. 189
  • casestudy8.1 Developments in the sugar beet industry, s. 190The transgenic approach: PDR, s. 192
  • Interactions involving viral proteins, s. 192
  • case study 8.2 Arabis mosaic virus, s. 194
  • RNA effects, s. 197
  • Some non-PDR approaches, s. 202
  • case study 8.3 DNA viruses, s. 203
  • What has been commercialized in Western agriculture?, s. 204
  • Yellow squash and zucchini, s. 204
  • Papaya, s. 205
  • Potato, s. 205
  • Risk, s. 206
  • Summary, s.208
  • Further reading, s. 209

9 Strategies for engineering stress tolerance, s. 212

  • Introduction, s. 212
  • The nature of abiotic stress, s. 214
  • The nature of water-deficit stress, s. 214
  • Different abiotic stresses create a water deficit, s. 215
  • case study 9.1 Glycine betaine production, s. 218
  • Targeted approaches to manipulating tolerance to specific water-deficit stresses, s. 222
  • Alternative approaches to salt stress, s. 222
  • case study 9.2 Na+/H* antiporters improve salt tolerance in transgenic plants, s. 223
  • Alternative approaches to cold stress, s.224
  • case study 9.3 The COR regulon, s. 224
  • Tolerance to heat stress, s. 228
  • Secondary effects of abiotic stress: the production of ROS, s. 229
  • Strategy 1: Expression of enzymes involved in scavenging ROS, s. 232
  • Strategy 2: Production of antioxidants, s. 234
  • Summary, s. 234
  • Further reading, s. 234

10 The improvement of crop yield and quality, s. 237

  • Introduction, s. 237
  • The genetic manipulation of fruit ripening, s. 238
  • case study 10.1 The genetic manipulation of fruit softening, s. 240
  • case study 10.2 The genetic modification of ethylene biosynthesis, s. 243
  • case study 10.3 Modification of colour, s. 247
  • case study 10.4 Golden Rice, s. 251
  • Engineering plant protein composition for improved nutrition, s. 256
  • The genetic manipulation of crop yield by enhancement of photosynthesis, s. 258
  • Manipulation of light harvesting and the assimilate distribution: phytochromes, s. 258
  • Direct manipulation of photosynthesis: enhancement of dark reactions, s. 261
  • Summary, s. 263
  • Further reading, s. 263

11  Molecular farming, s. 267

  • Introduction, s. 267
  • Carbohydrates and lipids, s. 267
  • Carbohydrate production, s. 267
  • case study 11.1 Starch, s. 268
  • case study 11.2 Polyfructans, s.272
  • Metabolic engineering of lipids, s.276
  • case study 11.3 Bioplastics, s. 282
  • Molecular farming of proteins, s. 285
  • Production systems, s. 286
  • case study 11.4 The oleosin system: hirudin and insulin production, s.289
  • Medically related proteins, s. 296
  • case study 11.5 Custom-made antibodies, s. 300
  • case study 11.6 Edible vaccines, s. 304
  • Economic and regulatory considerations for molecular farming, s.307
  • Summary, s. 311
  • Further reading, s. 312

12 Science and society: public acceptance of genetically modified crops, s. 316

  • Introduction, s. 316
  • Public concerns, s. 316
  • The current state of transgenic crops, s. 318
  • Who has benefited from these first-generation GM crops?, s. 318
  • What will drive the development of the future generations of GM crops?, s. 322
  • Concerns about GM crops, s. 323
  • Antibiotic-resistance genes, s. 323
  • Herbicide resistance and super-weeds, s. 324
  • Gene containment, s. 325
  • Big business, s. 328
  • Food safety, s. 330
  • The regulation of GM crops and products, s. 331
  • TheEU, s. 331
  • The USA, s. 338
  • Summary, s. 340
  • Further reading, s. 340

13 Beyond genetically modified crops, s. 343

  • Introduction, s. 343
  • "Greener" genetic engineering, s. 343
  • Genetic manipulation of complex agronomic traits, s. 345
  • Identification of genes associated with desirable traits, s. 348
  • Genetic mapping, s. 348
  • Quantitative trait loci, s. 352
  • Investigating gene function by reverse genetics, s. 354
  • Insertional mutagenesis, s. 354
  • TILLING, s. 355
  • Understanding gene function within the genomic context: functional genomics, s. 357
  • Transcriptomics, s. 357
  • Proteomics, s. 360
  • Interactomics, s. 362
  • Metabolomics, s. 362
  • Systems biology, s. 362

Summary, s. 363
Further reading, s. 363
Index, s. 367

Góra
varia 8.jpg

Zapytaj bibliotekarza

Telewizja UŚ

Więc Jestem. Studencki serwis rozwoju